A Cloud Intrusion Detection System Using Novel PRFCM Clustering and KNN Based Dempster-Shafer Rule
نویسندگان
چکیده
Cloud computing has established a new horizon in the field of Information Technology. Due to the large number of users and extensive utilization, the Cloud computing paradigm attracts intruders who exploit its vulnerabilities. To secure the Cloud environment from such intruders an Intrusion Detection System (IDS) is required. In this paper the authors have proposed an anomaly based IDS which classifies an incoming connection by taking the deviation of it from the normal behaviors. The proposed method uses a novel Penalty Reward based Fuzzy C-Means (PRFCM) clustering algorithm to generate a rule set and the best rule set is extracted from it using a modified approach for KNN algorithm. This best rule set is used in evidential reasoning of Dempster Shafer Theory for classification. The IDS has been trained and tested with NSL-KDD dataset for performance evaluation. The results prove the proposed IDS to be highly efficient and reliable. KeywoRDS Anomaly Detection, Cloud Computing, DST (Dempster-Shafer Theory), FCM (Fuzzy C-Means) Clustering, IDS (Intrusion Detection System), KNN, NSL-KDD Dataset, PRFCM (Penalty Reward Based FCM) Clustering
منابع مشابه
A Network Intrusion Detection Method Using Dempster-shafer Theory
An intrusion detection system (IDS) detects unauthorized manipulations of computer systems. Operation as feature reduction (including feature extraction and feature selection) plays an important role in the sense of improving classification performance and reducing the computational complexity of intrusion detection system. Feature reduction is even more important at online detection when less ...
متن کاملAssessment Methodology for Anomaly-Based Intrusion Detection in Cloud Computing
Cloud computing has become an attractive target for attackers as the mainstream technologies in the cloud, such as the virtualization and multitenancy, permit multiple users to utilize the same physical resource, thereby posing the so-called problem of internal facing security. Moreover, the traditional network-based intrusion detection systems (IDSs) are ineffective to be deployed in the cloud...
متن کاملDistributed Attack Prevention Using Dempster-Shafer Theory of Evidence
This paper details a robust collaborative intrusion detection methodology for detecting attacks within a Cloud federation. It is a proactive model and the responsibility for managing the elements of the Cloud is distributed among several monitoring nodes. Since there are a wide range of elements to manage, complexity grows proportionally with the size of the Cloud, so a suitable communication a...
متن کاملIntrusion Detection based on a Novel Hybrid Learning Approach
Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...
متن کاملEntropy Based Fuzzy Rule Weighting for Hierarchical Intrusion Detection
Predicting different behaviors in computer networks is the subject of many data mining researches. Providing a balanced Intrusion Detection System (IDS) that directly addresses the trade-off between the ability to detect new attack types and providing low false detection rate is a fundamental challenge. Many of the proposed methods perform well in one of the two aspects, and concentrate on a su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJCAC
دوره 6 شماره
صفحات -
تاریخ انتشار 2016